Quasisymmetric (k, l)-hook Schur functions
نویسندگان
چکیده
We introduce a quasisymmetric generalization of Berele and Regev’s hook Schur functions and prove that these new quasisymmetric hook Schur functions decompose the hook Schur functions in a natural way. In this paper we examine the combinatorics of the quasisymmetric hook Schur functions, providing analogues of the RobinsonSchensted-Knuth algorithm and a generalized Cauchy Identity. Résumé. Nous introduisons une généralisation quasisymetrique des fonctions “hook Schur” de Berele et Regev et nous prouvons ces nouvelle fonctions hook Schur quasisymetrique décomposent les fonctions hook Schur. Dans cet article, nous examinons la combinatoire des fonctions hook Schur quasisymetrique, fournissant des analogues de l’algorithme de Robinson-Schensted-Knuth et une généralisation d’identité Cauchy.
منابع مشابه
Skew row-strict quasisymmetric Schur functions
Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict You...
متن کاملSkew Quasisymmetric Schur Functions and Noncommutative Schur Functions
Recently a new basis for the Hopf algebra of quasisymmetric functions QSym, called quasisymmetric Schur functions, has been introduced by Haglund, Luoto, Mason, van Willigenburg. In this paper we extend the definition of quasisymmetric Schur functions to introduce skew quasisymmetric Schur functions. These functions include both classical skew Schur functions and quasisymmetric Schur functions ...
متن کاملMultiplication Rules for Schur and Quasisymmetric Schur Functions
An important problem in algebraic combinatorics is finding expansions of products of symmetric functions as sums of symmetric functions. Schur functions form a well-known basis for the ring of symmetric functions. The Littlewood-Richardson rule was introduced to expand the product of two Schur functions as a positive sum of Schur functions. Remmel and Whitney introduced an algorithmic way to fi...
متن کاملMultiplicity Free Schur, Skew Schur, and Quasisymmetric Schur Functions
In this paper we classify all Schur functions and skew Schur functions that are multiplicity free when expanded in the basis of fundamental quasisymmetric functions, termed F -multiplicity free. Combinatorially, this is equivalent to classifying all skew shapes whose standard Young tableaux have distinct descent sets. We then generalize our setting, and classify all F -multiplicity free quasisy...
متن کاملRow-strict quasisymmetric Schur functions
Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions called the quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions called the row-strict quasisymmetric Schur...
متن کامل